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Traditionally, the design of a transportation system has focused on either vehicle design or the network flow,

assuming the other as given. However, to define a system-level architecture for a transportation system, it is

advantageous to expand the system boundary during the design process to include the network routing, the vehicle

specifications, and the operations that couple the vehicle(s) and the network. In this paper, the transportation

architecture is decomposed into these fundamental subsystems by classifying the decisions required to define each

subsystem. Using an integrated transportation system formulation, the design of the transportation architecture can

be obtained by concurrently optimizing the vehicle design and network flow. This is accomplished by embedding a

linear programming solver in the perturbation step of simulated annealing to solve for the large number of linear

constraints imposed by the capacity and demand requirements of the network. The benefits of this new formulation

are illustrated through an example of an air transportation system for an overnight package delivery network in

which a 10% improvement in cost is obtained over traditional network flow optimization. The improvement in

system cost obtained can be attributed to the reduction in operational inefficiencies for the transportation system.

Nomenclature

A = aircraft type
C = cargo capacity, lb
f = fixed cost of allocating the aircraft, $/day
(i; k) = aircraft route that starts at node i travels to node k and

returns to node i
(i; j; k) = package route that starts at node i travels through

node k and terminates at node j
m = variable cost of using the aircraft, $/h
N = number of cities
Neng = number of engines
nik = number of aircraft on route (i; k)
Pij = package demand between cities i and j in a 24-h

period
R = range, n mile
T=W = thrust-to-weight ratio
Vc = cruise velocity, kt
W=S = wing loading, lb=ft2

xijk = number of packages on route (i; j; k)

I. Introduction

T HE system-of-systems philosophy [1–3] has expanded the
system boundary to encompass an integrated view of a system

during the design process. Systems of systems are collections of
systems (such as air vehicles) that can operate independently, but
deliver more value when designed and operated as a coordinated
ensemble. As we expand the definition of the system under
consideration, we effectively enlarge the design control volume,

which defines the boundary of inputs and outputs of the system. The
interior of the control volume is the design space under
consideration, in which the designer can manipulate the components
to achieve desired outputs, given the inherent physical constraints
and the external constraints across the boundary. As the control
volume expands, greater flexibility in decisions is achieved, but with
this flexibility comes an increase in problem size and complexity.

Figure 1 depicts both an aircraft with subsystem components and
an air transportation network that uses this aircraft. The control
volume for vehicle design can be limited to any single subsystem, a
limited interaction of subsystems, or the entire vehicle design.
Similarly, network optimization theory limits the control volume to
encompass only the transportation network, with the vehicle designs
as given inputs to the problem. Aircraft designers assume that
network demand and routing are given and produce a vehicle design
that satisfies the operational requirements: namely, the range and

capacity [4]. Operations researchers, on the other hand, often assume
that vehicle specifications are known and held constant and seek to
determine the best allocation of the fleet [5]. In reality, any vehicle is
always a compromise design for its intended operations. Although
the literature in each of the two areas (aircraft design and network
flow optimization) taken separately is voluminous, previous work
associated with the intersection between vehicle design and network
operations is surprisingly sparse. This paper therefore focuses on the
concurrent optimization of the aircraft design and network flow,
assuming that such design freedom exists, effectively enlarging the
control volume to include the aspects of Fig. 1.

Maier [1] defined a system of systems by the level of managerial
and operational independence of the components of the system. In air
transportation networks, multiple aircraft, each of which can be
operated and managed independently, collaborate to satisfy multiple
independent demands. By analyzing the design of an aircraft in the
context of a transportation network, the coupling between the aircraft
design and networkflow can be investigated and exploited to provide
more efficient operations overall.

Traditionally, optimization of the flow in a transportation network
focuses on determining the optimal set of operations for a given
vehicle or set of vehicles such that the prescribed demand is satisfied
(Ahuja et al. ). Investigations into the vehicle routing problem (VRP)
began with Dantzig and Ramser [7] with model development and a
discussion of the computational approaches to obtain solutions for
the truck routing problem. Toth and Vigo [8] presented a detailed
examination of the VRP and its variants. Simchi-Levi et al. [9] used
transportation network modeling to solve a school bus routing
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problem, in which the primary constraints focused on the timing
restrictions inherent in school bus pickups and dropoffs. Using
transportation networks, they were able to find an optimal allocation
of vehicles to routes and schedules.

For air transportation systems, the vehicle routing problem is
modified slightly to incorporate the additional constraints inherent in
flight. Yang and Kornfeld [10] considered the optimal allocation of a
set of predefined vehicles for an overnight package delivery system,
in which the objective is to minimize the total cost for a single day of
operation. Barnhart et al. [5] combined the traditional routing
problem with the fleet assignment problem to develop a more robust
methodology for defining the flight scheduling for an airline.

Recently, investigations into the design of vehicles to fulfill
multiple operations have been considered to understand the impact of
these requirements on the vehicle design characteristics. Frommer
and Crossley [11] compared the designs of fixed geometry and
morphing geometry aircraft operating as a fleet, for satisfying
multiple predefined operational scenarios. Crossley et al. [2],
specified the operations (namely, the routes), and the objectivewas to
define a vehicle design that satisfies the prescribed demand at the
lowest cost for a day of operation. This work was extended by Mane
et al. [3] when the problem size under consideration was increased
significantly, which showed the scalability of the approach to larger
problems.

In the context of space operations, Meissinger and Collins [12]
examined the design of a single multifunction orbit transfer vehicle
(OTV) that not only fulfills the current mission requirements but has
the flexibility to be extended for potential future mission objectives.
Given the new space exploration initiative, an increasing number of
investigations into the design of a space exploration system that will
travel to both the moon and Mars have been conducted. In Wooster
et al. [13] and Stanley et al. [14], multiple predefined reference
missions are used to evaluate the design of a space transportation
system for exploration.

By expanding the system boundary to include the transportation
network flow and operations into the vehicle design, operational
inefficiencies can be reduced, but at the cost of increased
computational complexity. The resulting model has both the mixed-
integer linear constraints inherent in network flow and routing
problems, as well as the nonlinear analysis functions required to
analyze aircraft or spacecraft designs. As such, it is necessary to find
efficient solution methods to solve problems of this structure to
obtain good solutions in a reasonable time period.

This paper investigates the benefits of solving a concurrent aircraft
design and network flow problem. In Sec. II, a decomposition of the

air transportation system is presented. Section III explains the
optimization approach used to solve the combined (integrated)
transportation optimization problem. Section IV presents the air
transportation example analyzed in this paper and compares the
results obtained through the traditional design approaches for
separate network and vehicle optimization with the concurrent
optimization approach presented in this paper. Section V compares
and analyzes the results obtained from the three approaches.
Section VI reviews the contributions and results presented and
discusses continuing work on this topic.

II. Problem Formulation

The integrated transportation system design problem consists of
four components: the network flow, the vehicle design, the
operations constraints, and the system-level objective. As shown in
Fig. 2, the vehicle and the network are the subsystems that determine
the cost of the transportation system, and the operations define the
constraints that couple them. The following subsections describe the
models and assumptions required to define each component of the
problem.

A. Network Model Formulation

The network subsystem defines the allocation of vehicles and
cargo (e.g., packages) to routes through the network, whereby the
network is defined by pairs of cities that are to be linked. In our

Fig. 1 Aircraft A320 with specific subsystems defined in greater detail as inserts (left) and Jet Blue air transportation network (right).

Vehicle Design

Define the vehicle design 
variables such that the 

physical relationships are 
satisfied

Network Flow

Determine the allocation of crew 
and/or cargo and vehicles to 

routes such that feasibility and 
demand constraints are satisfied

Operations 

Define the vehicle operations for each route such that 
the capability constraints are satisfied

Ensure that the crew and/or cargo distribution satisfies 
the capacity constraints 

System-Level Objective

Define an objective that represents the system-level goal

Fig. 2 Diagram of the integrated transportation system model.
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model, an aircraft flies between two cities and performs the round-
trip flight once in a 24-h period. The number of aircraft of type A
flying from city i to city k and returning is defined as nAik. Because
only feasible routes are defined, the vehicle allocation constraints
simply impose a limit on the number of aircraft of a given type flying
a given route.

nAik � 10 k� 1; . . . ; N 8 A (1)

The (cargo) package flow constraints ensure that the demand of
each city pair is fulfilled. Although aircraft can fly only round trips
between two cities, we assume that packages may travel through an
additional city toward the destination. By defining a route �i; j; k� as
starting at city i traveling through city k and terminating at city j, the
number of packages traveling this route can be defined as xijk.

The demand constraints that govern the feasibility of the package
flow are supplied in Eq. (2).

XN
k�1

xijk � Pij i; j� 1; . . . ; N (2)

where Pij is the package demand from city i to city j, and N is the
total number of cities in the network.

Figure 3 defines both the aircraft and package variables in the
context of a simple three-city-network example. On the left, the first
leg shows the outbound flights and the first segment of the trip for
packages. On the right, the second leg shows the returnflights and the
final segment of the package routes. As shown inFig. 3, packages can
be delivered directly on the first leg xijj, wait to be delivered on the
second leg xiji, or travel both legs toward the destination xijk.

B. Vehicle Model Formulation

The vehicle subsystem determines the architectural and
performance characteristics of the aircraft design. The design of an
aircraft of type A is defined by the range RA, capacity CA, cruise
velocity VAc , wing loadingWA=S, thrust-to-weight ratio TA=W, and
number of engines NAeng. Equation (3) defines the range of feasible
values for each of the design variables.

1000 n mile � RA � 5000 n mile

5000 lb � CA � 250; 000 lb 250 kt � VAc � 550 kt

95
lb

ft2
� W

A

S
� 150

lb

ft2
0:3 � T

A

W
� 0:4

NAeng 2 f1; 2; 3; 4g

(3)

Additionally, a constraint on takeoff length is included to ensure that
aircraft can fly out of any major airport.

dTO �
1:21�WA=S�
g�CL�TA=W�

� 9000 ft 8 A (4)

where � is the density at sea level, g is the gravitational constant, CL
is the lift coefficient at takeoff, and the factor of 1.21 is a constant to
account for differences in aircraft performance during takeoff, as
recommended by Anderson [15].

The takeoffweight of the aircraft can be calculated from the design
variables assuming a simple cruise profile, as shown in Fig. 4.
Although the takeoff weight is not constrained explicitly, it is a
required input to the cost function described in the next section.
Using a model provided by Raymer [4], a weight ratio is assigned to
each segment of the cruise profile. The weight ratios for takeoff,
climb, and decent/landing are typical values provided byRaymer and
are listed in Table 1.

The weight ratios for the cruise WC and loiter WL segments are
taken from the Breguet range and endurance equations, respectively,
and are listed in Eq. (5).

WA
C � exp

�RASFC
VAc L=D

WA
L � exp

�tSFC
L=D

(5)

where SFC is the specific fuel consumption of the aircraft, L=D is the
lift-to-drag ratio, and t is the time spent loitering before landing. The
nominal values of these parameters are listed in Table 2. By
multiplying the weight ratios together, the total weight ratioWA

T for
the entire flight profile of vehicle A can be estimated. The fuel
fraction fAf of aircraft A is computed from the total weight ratio, as

shown in Eq. (6), whereby a 6% fuel reserve is assumed.

fAf � 1:06�1 �WA
T � (6)

The total takeoff weightWA
0 is defined to be the sum of the cargo

weight, the weight of the fuel for a fully loaded tank, and the
structural weight of aircraft A. Rearranging this relationship, we can
express the total takeoff weight of the aircraft as shown in Eq. (7).

WA
0 �

WA
p

1 � fAf � sAf
(7)

where the structural fraction sAf is the ratio of the structuralmass to the

total takeoff mass. The payload weightWA
p is the total cargo mass of

the aircraft plus the weight of two crew members, because we focus
on cargo flights in this paper. The cargo mass is assumed to be equal
to the aircraft capacityCA, which decouples the aircraft performance
constraints (e.g., on range) from the package distribution. The
structural or dry weight of the aircraft accounts for the total unloaded
and unfueled aircraft weight and is estimated by an empirically

i j

k

nij xijj

nik

i j

k

nji xiji

nik

nij

nji

njk njk

xjii

xjij

xijk xijkxjik

xjik

First leg (outbound) Second leg (inbound)

Fig. 3 Description of network flow variables.

Takeoff

Climb

Cruise Descend

Loiter

Land

Fig. 4 Diagram of a simple cruise profile.

Table 1 Defined weight ratios

for simple cruise profile segments

Segment Weight ratio

Takeoff 0.97
Climb 0.985
Descent/landing 0.995

Table 2 Parameter values
for aircraft design

Parameter Value

SFC, 1/s 0.6
L/D 17
t, min 30
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derived formula for vehicle mass, taken from Raymer [4] and shown
in Eq. (8).

sAf � 1:02WA�:06
0 (8)

The total aircraft weight and the weight of the fuel are determined by
numerically solving the system of equations defined by Eqs. (7) and
(8).

C. Operations Model Formulation

The operations of a transportation system determine how the
vehicle performs on a given route and is defined by two sets of
equations: capability and capacity constraints. The capability
constraints, given in Eq. (9), require that a given vehicle cannot travel
between two cities for which the distance is greater than the range of
the aircraft (assuming that refueling is not allowed).

dik � RA k� 1; . . . ; N 8 A (9)

To formulate the capacity constraints, we first define the capacity
of route �i; k� asGik, as in Eq. (10), and then the capacity constraints
can be formulated as shown in Eq. (11).

Gik �
X
A

nAikC
A (10)

XN
j�1

xijk � Gik i; k� 1; . . . ; N

XN
i�1

xijk � Gjk j; k� 1; . . . ; N

(11)

Because we assume that a given vehicle travels only between two
cities, the capacity of a route is the same on the return leg as it is on the
outbound leg.

D. System Objective

In this paper, the objective is tominimize the total system cost for a
single day of operation. Each aircraft has two associated cost values:
a fixed cost that is associated with an aircraft’s allocation, and a
variable cost that is associated with an aircraft’s operation. The
aircraft’s performance parameters define both the fixed and variable
costs for the design, which are taken from the development and
procurement costs of aircraft (DAPCA 4) models provided by
Raymer [4].

The cost model uses the structural weight of the aircraft Ws,
velocity Vc, number of engines Neng, and thrust per engine Teng as
inputs to compute the research, development, testing, and evaluation
costs. These nonrecurring costs are used to determine the
depreciation of the aircraft. The fixed cost fA of the aircraft is the
cost per day of ownership of aircraft A and is equivalent to the per-
day depreciation of the aircraft. The variable costs mA are the
recurring costs associated with the usage of aircraft A and can
therefore be computed as the cost per hour of aircraft flight.

The total system operating costs are therefore defined as

J�
XN
i�1

XN
j�1

X
A

cAikn
A
ik (12)

where cAik represents the cost of aircraft A traveling on route �i; k�, as
expressed in Eq. (13).

cAik �

8>><
>>:

fA �mA2dik
VAc

; rA � dik; i ≠ k

1; rA < dik; i ≠ k
0; i� k

(13)

Equation (13) imposes a cost equal to the fixed cost plus twice the
time required to travel a single leg of the trip (to account for the round

trip) multiplied by the variable cost per hour of flying the aircraft, if
the aircraft can fly a given leg, as determined by the range
requirement. If an aircraft does not have the range required to travel a
given leg, a very large cost is assigned to prohibit the selection.
Finally, in the current model, stopover and storage at a given city is
free (for cargo), and therefore same-city transfers have no cost
associated with them.

III. Concurrent Design Optimization Methodology

The integrated transportation system design problem, as described
earlier, assimilates all of the preceding defined variables and
constraints into a single system-level problem. As such, the design
problem can be classified as a mixed-integer nonlinear programming
problem (MINLP), which is difficult to solve effectively (Bertsekas
[16] and Bertsimas and Weismantel [17]). Typically, either
simplifications are made to the constraints or the problem is
decomposed using methods such as collaborative optimization
(Braun and Kroo [18]) or bilevel integrated system synthesis
(BLISS) (Sobieszczanski-Sobieski [19]). However, due to the
special structure of the integrated transportation system design
problem, a different type of decomposition was developed to
effectively solve the problem.

Heuristic optimization algorithms are often employed to solve
MINLPs because they can handle problems of any mathematical
structure. One such heuristic optimization algorithm that provides a
useful approach to design space exploration is simulated annealing
(SA) [20]. SA can solve problems with mixed-integer variables and
nonlinear constraints and analysis functions by perturbing the design
vector and evaluating the likelihood of improving the current
objective function value by moving to a new point in the design
space. In addition, SA has the added property that the acceptance of
new design points changes as the algorithm evolves and thus mimics
gradient-based decisions near the end of the optimization‡. However,
problems with many constraints can be difficult to formulate in this
framework.

For highly constrained optimization problems, it is often desirable
to continuously perturb the design variables until a feasible design
vector is selected. However, for problems with continuous variables
and equality constraints, it is unlikely that random perturbations of
the design variables will produce feasible solutions. For this reason,
it is desirable to usemethods for constraint solving that can determine
a new feasible set of design points. By embedding a linear
programming (LP) solver within SA, the difficulties with satisfying
many linear constraints within the heuristic optimizer are
ameliorated. This embedded optimization implementation is what
enables an efficient solution of the coupled vehicle design and
network flow problem. Using this approach, a single system-level
design problem can be formulated using a heuristic optimization
algorithm to navigate the design space, and the linear constraints
governing the network flows and capacity constraints are computed
by the embedded LP solver to ensure a feasible package flow.

Table 3 shows the dependence of the constraints and objective
function described in Sec. II on the variables in the problem. Here,
xveh represents the vehicle design variables presented in Eq. (3), nik

Table 3 Decomposition of integrated

air transportation system design problem

Variables

Equation xveh nik xijk
N-max [Eq. (1)] X
Demand [Eq. (2)] X
Takeoff [Eq. (7)] X
Range [Eq. (9)] X X
Capacity [Eq. (11)] X X X
Cost [Eq. (12)] X X

‡Data available online at http://ocw.mit.edu/OcwWeb/Aeronautics-and-
Astronautics/16-888Spring-2004/CourseHome/index.htm.
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defines the number of aircraft on each route, and xijk is the package
flow on each route. Examining Table 3 reveals that the takeoff
constraint is dependent only on the vehicle design variables xveh, and
the maximum aircraft constraint depends solely on the vehicle
routing variables nik. Therefore, these decisions can be made
independent of any other information. Another important
observation that can be obtained from examining Table 3 is that
both the objective function and range constraint are independent of
the package flow variables. This observation allows for the package
flow variables to be defined as a secondary decision. The demand
constraints and capacity constraints are the only two sets of
constraints that involve the packageflowvariables. Thus, by defining
both the vehicle design and routing variables before the evaluation of
the demand and capacity constraints, a linear system of constraints
governing only the package flow variables is defined, which can be
used advantageously in the optimization.

Figure 5 presents the optimization flow diagram for the integrated
transportation system design problem. The design vector consists of
the aircraft design variables and the network allocation variables. By
perturbing the values of these variables, the optimizer can evaluate
the takeoff constraint and determine if the aircraft design is feasible,
given this vehicle design constraint. Given a feasible aircraft design,
the demand and capacity constraints are evaluated by an embedded
LP solver that determines if a feasible network flow exists. If there a
feasible solution exists, the current design vector is evaluated to
determine the total system cost; otherwise, the design variables are
perturbed to define a new design vector. This process continues until
the algorithm converges.

IV. Example Air Transportation System

To evaluate the effectiveness of the integrated transportation
system design methodology against conventional practice, a case
study of an air transportation system for overnight package delivery
network, which was presented earlier by Yang and Kornfeld [10], is
considered. The models described earlier are implemented for a
network consisting of the seven largest cities, in terms of demand to
and from Atlanta (ATL), Boston (BOS), Chicago (ORD), Dallas
(DFW), Los Angeles (LAX), New York (JFK), and San Francisco
(SFO). The distance and demand information is provided in Tables 4
and 5, respectively. The network is assumed to have symmetric
demand between each city pair, and the network is fully connected
(connections represent the straight-line distances between every
city).

For the example network defined, traditional optimization
approaches are employed to solve the problem to provide a basis for
comparison for the integrated optimization methodology presented
in this paper. The traditional optimization methodology embodies

two views: network optimization with given vehicles and vehicle
optimization with a given network. The following sections detail the
results of these two cases, as well as the results of the concurrent
optimization, using the framework developed in Fig. 5.

A. Case 1: Network Optimization

In traditional network optimization, a set of vehicles are defined,
each with an associated cost and capability. Using these predefined
vehicle parameters, an optimal allocation of vehicles to routes can be
defined to meet the demand of the network. In Yang and Kornfeld
[10], three types of aircraft are chosen to provide a representative
sample for a small (plane A), medium (plane B), and large (plane C)
airplane. Using the cost calculation described earlier, the fixed and
variable costs can be calculated from the vehicle characteristics, and
the relevant parameters of each aircraft are given in Table 6.

Using the parameters listed in Table 6 and the network and cost
models described in Sec. II, an optimal allocation of vehicles to
routes can be determined by employing CPLEX as a linear mixed-
integer optimization algorithm. For the example network defined in
Tables 4 and 5, the minimum total cost for one day of operations is
$517,030, and the optimal allocation of aircraft to routes is depicted
in Fig. 6.

By examining Fig. 6 and Table 7, it is shown that only themedium
(plane B) and large (plane C) airplanes are allocated, due to both the
range and capacity constraints. The solution definesChicago as a hub
and additionally routes incoming flights from every city except San
Francisco into Dallas. Because San Francisco has only two outgoing
flights, it is necessary to use the largest-capacity aircraft on both
routes to accommodate the packages. Plane C is also allocated on the
New York to Los Angeles and New York to Chicago routes, to
accommodate the large demand originating in New York.

B. Case 2: Vehicle Optimization

In traditional vehicle optimization, the network flow is defined a
priori and the vehicle design characteristics are optimized to produce

R

C

W/S

T/W

Fixed cost per 
plane ($/day)

Variable cost 
per plane ($/h)

Total network 
cost ($/day) 

[Eqs. (12) and (13)]

Sizing 
module 

[Eqs. (5) and (8)]

Check feasibility

Package flow 
determined by LP 

[Eqs. (2), (10), and (11)]

YesNo

Simulated annealingPerturb variables 
[Eqs. (1) and (3)]

YesNo

Takeoff 
constraint 
[Eq. (4)]

Vc

nik

Neng
Check feasibility

YesNo

converged?

network flow feasible ?

aircraft design feasible ?

Fig. 5 Integrated transportation system design optimization with simulated annealing.

Table 4 City-to-city distances for example air
transportation network, n mile

ATL BOS ORD DFW LAX JFK SFO

ATL 0 934 622 688 1921 756 2179
BOS 934 0 882 1538 2629 183 2729
ORD 622 882 0 806 1767 713 1866
DFW 688 1538 806 0 1257 1360 1518
LAX 1921 2629 1767 1257 0 2454 330
JFK 756 183 713 1360 2454 0 2560
SFO 2179 2729 1866 1518 330 2560 0
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the lowest system cost. For the traditional vehicle design
optimization problem, a hub–spoke network configuration is
assumed, in which a single city in the network is designated as the
hub and all routes in the network connect to this city. More precisely,
a hub is defined as a node with nodal degree N � 1, where N
represents the number of nodes in the network. The optimal vehicle
design characteristics defined are based on the best compromise in
performance for the network configuration. The vehicle optimization
requires an algorithm that can accommodate the mixed-integer
variables and nonlinear analysis functions required to define the
vehicle design and allocation. As such, simulated annealing
(Kirkpatrick et al. [20]) is chosen as the optimization algorithm for
this case.

The optimal cost for this hub–spoke network and optimized cargo
aircraft design is $570,720 per day, and the design parameters are
provided in Table 8 for the corresponding network configuration
shown in Fig. 7 and detailed in Table 9.

If we examine Table 8 and Fig. 7, we see that the range of the
aircraft designed is between that of planes A and B from case 1,
because a full �2500 n mile transcontinental flight is not required,
due to the hub at ORD. The capacity of the aircraft designed by the
vehicle optimization is between that of aircraft B andC, and it reflects
the large demand requirements for direct flights into Chicago.
Although the vehicle is designed to reduce inefficiencies in the
network, the requirement of only using direct flights (forcing a hub at
ORD) and only allowing one single type of aircraft actually increases
the system cost by�10% relative to case 1.

C. Case 3: Concurrent Vehicle and Network Optimization

For the integrated transportation network design, the vehicle,
network, and operations definitions are concurrently optimized. The
design vector includes variables that define both the vehicle design
and network flow, and the system is subject to the constraints that
govern the vehicle, network, and operations. The integrated
transportation system design problem is solved using the
methodology described in Sec. II.

If we consider the design of a single vehicle and concurrently
optimize the vehicle characteristics and the flow through the network
for the example air transportation network, the optimal system cost is
$463,723, which is a reduction in cost of 10% over the traditional
network optimization and a reduction of 18% over the traditional
vehicle optimization. The optimal vehicle design parameters for the
concurrent design optimization are listed in Table 10, and the optimal
configuration is provided in Fig. 8 and detailed in Table 11.

The concurrently optimized solution presented in Table 10 and
Fig. 8 is sized to be slightly smaller than airplane B. The reduction in
range would no longer accommodate transatlantic flights, but does

Table 5 Daily demand for example air transportation network, lb

ATL BOS ORD DFW LAX JFK SFO

ATL 0 14,045 31,313 19,984 34,506 57,949 37,318
BOS 14,045 0 27,261 17,398 30,041 50,451 32,489
ORD 31,313 27,261 0 38,788 66,975 112,479 72,434
DFW 19,984 17,398 38,788 0 42,743 71,784 46,227
LAX 34,506 30,041 66,975 42,743 0 123,948 79,820
JFK 57,949 50,451 112,479 71,784 123,948 0 134,050
SFO 37,318 32,489 72,434 46,227 79,820 134,050 0

Table 6 Predefined aircraft specifications for

case 1

Parameter Plane A Plane B Plane C

Capacity C, lb 5000 72,210 202,100
Range R, n mile 1063 3000 3950
Velocity Vc, kt 252 465 526
Fixed cost f, $/day 1481 10,616 26,129
Linear cost m, $/h 758 3116 7194

Fig. 6 Optimal configuration for case 1.

Table 7 Routing matrix for case 1

ATL BOS ORD DFW LAX JFK SFO

ATL B B
BOS B B B
ORD
DFW B B
LAX B B
JFK B C B C
SFO C C

Table 8 Aircraft specifications for case 2

Parameter New plane design

Capacity C, lb 128,050
Range R, n mile 1920
Velocity Vc, kt 540
Wing loadingW=S, lb=ft2 134
Thrust to weight T=W .315
Number of engines Neng 2
Fixed cost f, $/day 14,106
Linear cost m, $/h 4083

Table 9 Routing matrix for case 2

ATL BOS ORD DFW LAX JFK SFO

ATL 2
BOS 2
ORD
DFW 2
LAX 3
JFK 5
SFO 4
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still satisfy the transcontinental distance requirements for the New
York to Los Angeles and New York to San Francisco flights. By
reducing the range and the capacity of the vehicle design slightly, a
reduction in aircraft costs is obtained and it is now cheaper to use
more of these aircraft. Again, because directflights are not required (a
strict hub–spoke network is not enforced) the capacity of the
concurrently optimized aircraft is less than that of the vehicle
optimization design from case 2, but the resulting aircraft has a
greater range.

V. Discussion

The integrated transportation system designmethodology exploits
the coupling of the vehicle and network by defining a more efficient
set of operations for the transportation system. This effect can best be
explained and visualized by plotting the distance vs demand of each
city pair in the network (Fig. 9). In addition, vehicle design points are
included by plotting the range vs capacity of the aircraft involved in
cases 1–3. The relationship of the vehicle design specifications to the
network requirements can be interpreted as follows. All demand
points lying within the (dashed) bounding box of a vehicle design
point can be fulfilled by a single direct flight of that vehicle. Any
points to the right of the vehicle design point but below the upper
bound of the box require at least one connection (stopover or hop),
because the distance exceeds the aircraft’s range. Additionally, any
points above the vehicle design point but left of the right bound of the
box require more than one flight, because the demand exceeds the
capacity of a single vehicle.

Figure 9 displays the distance and demand of the seven-city
network and the vehicle design points from all three cases, as
summarized in Table 12. By examining Fig. 9, we see that the
integrated optimized aircraft design (case 3) has a range that can just
handle the distance requirements of New York to Los Angeles and
New York to San Francisco flights (with 6% fuel margin), but the
demand between these cities is almost twice the aircraft’s capacity. If
we examine Fig. 8, we see that there are two flights fromLosAngeles
to New York and a direct flight in each direction between New York
and San Francisco, which can accommodate the New York to Los
Angeles and New York to San Francisco demands, respectively.
However, it is important to realize that some of the flow between
these city pairs may be handled by other connecting flights, because
there is a Boston to New York flight that may require some of the
Boston to Los Angles and Boston to San Francisco packages to be
flown on the return flights from Los Angeles and San Francisco,
respectively. Thus, the optimal solution is a hybrid between a hub-
and-spoke and direct architecture.

Examining Table 12 further reveals the effect of the design
decisions on the overall unit cost of the aircraft. The unit cost is
defined as the cost per pound of cargo shipped per nautical mile
flown, assuming the aircraft is at full capacity and traveling the
maximum range for a round-trip flight. The unit cost allows the
different aircraft designs to be compared independently of the
network routing. As expected, the smallest aircraft (plane A) has the
largest per unit transportation cost, and the largest aircraft (plane C)
has the smallest unit cost, which is due to the economies of scale
captured by the cost models [4]. Further examination of Table 12
shows that although the unit transportation cost of the concurrent
design aircraft (case 3) is slightly higher than the unit transportation
cost of the vehicle design aircraft (case 2) and more aircraft are
present in the case 3 architecture than in that of case 2, case 3 has a
lower total system cost. This fact can be explained by the higher
functional efficiency of the case 3 architecture.

The functional efficiency defines the percentage of used function
in each case and is provided in Table 13. The carrier capability use is
defined as the ratio of the total cargo (package) weight being
transported through the network (2,284,006 lb) to the total capacity
of each transportation architecture defined by each of the three
optimization cases for the example network. The propulsive
capability use is defined as the ratio of the total distance traveled in
the network to the total range capability of all aircraft traveling in the
network.

Examining Table 13 reveals that the vehicle design-only solution
(case 2) has the highest capability use of all three cases, yet has the
highest system cost. The concurrently optimized solution (case 3)
has the highest capacity use of all three solutions and the lowest cost.
Comparing this solution with cases 1 and 2 reveals that efficiency in
carrier use is more important than efficiency in propulsive capability.
This observation is supported by the dependence of design and
operating costs on aircraft size and the assumption that the range of
the aircraft is not significantly affected by the actual cargo loading.

Fig. 7 Optimal configuration for case 2.

Table 10 Aircraft specifications for case 3

Parameter New plane design

Capacity C, lb 69,884
Range R, n mile 2560
Velocity Vc, kt 550
Wing loadingW=S, lb=ft2 106
Thrust to weight T=W .302
Number of engines Neng 2
Fixed cost f, $/day 9633
Linear cost m, $/h 2807

Table 11 Routing matrix for case 3

ATL BOS ORD DFW LAX JFK SFO

ATL 1 1 1
BOS 1 2
ORD 1 1
DFW 1 1
LAX 1 1 2 1
JFK 1 1 1
SFO 1 1 1

Fig. 8 Optimal configuration for case 3.
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VI. Conclusions

In this paper, a methodology for integrated transportation network
designwas presented. By expanding the definition of a transportation
system to include the vehicle definition as well as the network and
operations during the design process, the system control volumewas
expanded to produce a system-level solution to the transportation
architecture. Using the formulations developed to define the
network, vehicle, and operations, a concurrent optimization of the
transportation system definition is obtained for an example network
in which a 10% improvement in cost over a traditional network
analysis is realized.

Continuing work in this area centers around a relaxation of
assumptions required to define the models used. For instance, the
requirement that aircraft fly only a single round-trip route could be
relaxed, allowing a single aircraft to visit multiple cities before
returning to the original city; however, this expansion would require
tracking the flight times to ensure feasible connections. The capacity
and capability constraints were decoupled, by assuming that all
aircraft operated at maximum capacity when evaluating aircraft
capability. By including the package flows as part of the design
vector, the actual capability of the vehicle could be assessed for a

given route, but at the expense of computational complexity.
Furthermore, the fidelity of the aircraft design models could be
increased to a level that would be more effective at analyzing aircraft
designs beyond the preconcept design phase.

This research could also be extended to analyze more complex
problems. In the networkmodels, the demand for cargowas assumed
to be fixed; however, in reality, demand estimates are generally
stochastic. This methodology could be extended to analyze
probabilistic demand or analyze the effects of a demand evolution
over time to define a robust transportation architecture. In the current
design problem, only a single vehicle design was allowed. However,
the problem formulation is defined such that extending the design
problem to allow for multiple aircraft designs is straightforward.
Such an analysis would provide a quantitative understanding of the
appropriate fleet composition mixture and the effect of limiting the
number of aircraft types allowed. An idealized solution might
provide a customized aircraft for each route, which is clearly
unrealistic in practice. In the case of multiple aircraft types, the
analysis needs to reflect the requirements of operating a
heterogeneous fleet, and therefore additional costs such as ground
facility operations, maintenance, sparing, and cross training would
need to be accounted for.

The main innovation in this research lies in the problem
decomposition and the embedded optimization formulation (Fig. 5
and Table 3) that uses an LP solver to ensure network flow feasibility
within the nonlinear aircraft design problem. This methodology was
developed to alleviate inefficiencies in the traditional simulated
annealing framework and, along with the decomposition approach,
provide good solutions to the integrated transportation system design
problem in a reasonable time frame. Although the computational
scalability of the embedded optimization framework for the

Table 12 Summary of results for three cases

Parameter Case 1: plane a Case 1: plane b Case 1: plane c Case 2 Case 3

Capacity C, lb 5000 72,210 202,100 128,050 69,884
Range R, n mile 1063 3000 3950 1920 2560
Fixed cost f, $/day 1481 10,616 26,129 14,106 9633
Linear cost m, $/h 758 3116 7194 4083 2807
Unit cost, $/lb/n mile 3:7 	 10�4 5:9 	 10�5 4:2 	 10�5 4:4 	 10�5 5:0 	 10�5

Number used 0 11 4 18 21
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Fig. 9 Demand vs distance for the seven-city network; aircraft design envelopes (capacity and range) are shown superimposed as dashed boxes.

Table 13 Percent of use of aircraft capabilities for

largest seven-city example

Case Carrier capacity use Propulsive capability use

Case 1 75% 40%
Case 2 50% 61%
Case 3 78% 47%
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integrated formulation in which larger city-pair networks with
dozens or hundreds of nodes are examined remains to be
investigated, initial investigations detailed by Taylor [21] show
promise for this method.

The value of this analysis is not in the actual results obtained, but in
the problem formulation. By expanding the definition of the system
to include the vehicle, network, and operations, a more efficient
system architecture can be obtained that reduces operating costs.
This methodology can aid in strategic planning at a cargo or
passenger airline by informing investment decisions, assisting with
fleet planning, and understanding the commercial success or lack
thereof of past designs. Alternatively, aircraft designers can use this
methodology to customize variants and fine-tune specifications of
future aircraft while considering the underlying network demand and
route structure.
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